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ABSTRACT 

In order to analyze the influence of liquid sloshing on the roll stability of the sprayer, the equivalent mechanical 

model of liquid sloshing was introduced. A multi-degree-of-freedom model of the sprayer chassis was 

established that includes the effect of liquid sloshing. An E-level road spectrum was constructed based on 

sinusoid superposition method according to the grade of the field ground unevenness, and the roll stability of 

the sprayer chassis under these random excitations was investigated. The effects of liquid filling ratio and 

driving speed were analyzed. The results show that the roll angle decreases with the increase of filling ratio at 

low speed, but the situation is the opposite at high speed. The vertical acceleration of the vehicle body 

decreases to some extent under some situations due to the presence of the liquid. In general, both the roll 

angle and the vertical acceleration increase with the increase of the driving speed, especially in the case of 

existing liquid sloshing.  

 

摘要 

为分析液体晃动对喷雾机侧倾稳定性的影响，引入液体晃动等效力学模型。建立了包含液体晃动影响的喷雾机

底盘多自由度动力学模型。根据农田地面不平度等级构建了 E级路面谱，研究了地面不平激励下喷雾机底盘的

侧倾稳定性。分析了充液比和行驶速度的影响。结果表明：侧倾角低速时随液体深度增加而减小，而高速时情

况相反。由于液体的存在，车身垂向加速度在某种情形下有所减小。总体来看，侧倾角和垂向加速度都随行驶

速度增加而增大，存在液体晃动时更加显著。 

 

INTRODUCTION 

 The self-propelled boom sprayer has been widely used in the chemical control of crop pests and 

diseases in farmland due to the advantages of high efficiency and good pesticide application effect.  High-

clearance or ultra-high-clearance sprayer is usually adopted in order to reduce crop damage, especially for 

the long-stalked crops such as corn and rice. The engine, cab, water tank and boom are generally placed on 

the frame in order to reduce the collision with the crop. Thus, high ground clearance means that the center of 

mass of the sprayer is high, which reduces the roll and pitch stability. Different from other agricultural machinery 

that is totally made of solid material, the position of the centroid of the sprayer is more sensitive to the attitude 

because of the fluidity of the fluid in the tank. Unfortunately, there are inevitable obstacles such as bumps and 

dips on country roads and fields. Furthermore, the large amplitude liquid sloshing produces an impact pressure 

on the tank wall, and the resulting sloshing force also acts on the sprayer. Obviously, the roll and pitch stability 

of the sprayer will be affected by this lateral force. 

 Due to its particularity, researches on high-clearance sprayers mainly focus on local structure design 

or optimization such as vehicle chassis design (Chen et al., 2020; Qiu, et al., 2020; Wu et al., 2018; Yang et 

al., 2014; Zeng et al., 2019), vehicle or boom attitude control (Cui et al., 2018; Pochi and Vannucci, 2002; 

Tahmasebi et al., 2015; Xue et al., 2018; Zhou et al., 2020), spray monitoring (Zhai et al., 2018), etc., while 

the roll stability is rarely studied (Ding et al., 2019; Yu et al., 2020).  
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 At present, the research of liquid sloshing on vehicle stability is mainly carried out on road or railway 

tanks (Hu et al., 2013). For transport vehicles on road, rollover accidents mainly come from rapid steering or 

braking, so the angle of the steering wheel or front wheel is generally used as the input of the system. The 

road unevenness is often not involved because of the little effect. Different from road transportation vehicles, 

sprayers face more complex and harsh road conditions despite their relatively low speeds. In addition to the 

effect of the slowly-changed ramp on the centroid position of the sprayer, rural roads and farmland have not 

only relatively small but continuous ground unevenness but also large bumps and dips such as ridges and 

ditches. The liquid in the tank sloshes significantly under these continuous or occasional excitations, and the 

sloshing force acts on the sprayer, which not only increases the difficulty of manipulation, but also reduces the 

roll and pitch stability.  

 In order to investigate the influence on roll stability of liquid sloshing, a mechanical model that is 

equivalent with the effect of liquid sloshing was introduced. At the same time, the 1/2 car body model that 

includes the frame, left and right wheel was built to express the roll movement. Then, a coupling model was 

established by combining these two models. The dynamic response of the system under the excitation of 

ground unevenness was obtained, and influencing factors of the roll stability were investigated. 

 

MATERIALS AND METHODS 

EQUIVALENT MECHANICAL MODEL OF LIQUID SLOSHING 

 The basic methods of liquid sloshing research can be divided into three categories: theoretical analysis, 

numerical simulation, and experimental research. The experimental and simulation methods are very useful to 

observe and explain the liquid sloshing phenomenon, but it is difficult to apply directly in theoretical analysis. 

In addition, it is not easy to couple the fluid dynamics equation with the vehicle's dynamics model. Therefore, 

reduced-order models such as pendulum or spring-mass are often used to equate some dynamic 

characteristics of liquid sloshing in engineering (Abramson, 1966; Deng et al., 2016; Li et al., 2011; Zheng et 

al., 2013). The equivalent mechanical model composed of mass and spring is shown in Fig. 1. 

 

 
Fig. 1 - Equivalent model of liquid sloshing 

 

 The mass, the centroid position, the natural frequency, and the sloshing force and moment of the 

equivalent system should be equal to the original liquid system. According to this principle, the calculation 

formula of the physical quantities appeared in Fig. 1 for the rectangular tank is as follows (Ibrahim, 2005). 
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where, mf  is the mass of liquid, [kg]; mi is the i-th motion mass, [kg] and hi is its position, [m]; m0  is the fixed 

mass, [kg] and h0 is its position, [m]; ki is the i-th stiffness of the spring, [N/m]; ρ is the density of liquid, [kg/m3]; 

g is the gravity acceleration, [m/s2]; lf, wf  and hf  are the length, width and height of liquid respectively, [m]; 

1,2,3i = . 

 

LIQUID SLOSHING – VEHICLE ROLL COUPLING MODEL 

 The attitude of the sprayer chassis changes due to the uneven ground, and the liquid in the tank fixed 

on the frame of the chassis also moves. Different from solid, fluid motion not only affects the distribution of the 

mass but also has an impact pressure on the tank. Thus, more complex dynamics properties will be present 

for the sprayer than for other agricultural machinery. 

 The chassis of the self-propelled boom sprayer is mainly composed of frame, engine, suspension, 

wheels and steering system. The ground roughness excitations directly acting on the wheels are transmitted 

to the frame through the suspension, causing pitch and roll motions, as shown in Fig. 2. Both of the motions 

can make the liquid in the tank to slosh, which in turn affects the pitch and roll stability of the sprayer. In this 

paper, only rolling stability is considered to better understand the nature of liquid sloshing and its effect on the 

sprayer dynamics. 

 
Fig. 2 – Schematic diagram of the sprayer chassis and the tank (left: side view; right: rear view) 

 

 The 1/2 car body model is adopted to study the roll stability of sprayers chassis under the conditions 

of uneven ground. In this model, the vertical movement of the left and right wheel is considered, and the vertical 

and roll movements of the frame is considered. The roll of the frame causes the liquid sloshing, and the liquid 

sloshing force in turn affects the roll movement. The coupled dynamics model is shown in Fig. 3.  

 
Fig. 3 - Coupling model of the sprayer 
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 The damping of the tire is relatively small, so only its stiffness is considered, and the spring kt is used 

to describe its elasticity. The suspension is simulated with the spring ks and the damper cs. Assume that the 

unsprung mass mt only vibrates in the vertical direction, while the sprung mass ms moves in a plane around 

the roll center (R.C). 
 The Cartesian coordinate system is used to describe the movement of the sprayer. The x-axis is along 

the longitudinal direction of the vehicle, and its positive direction is the forward direction; the y-axis points to 

the side of the vehicle, and the left is the positive direction; the z-axis is along the vertical direction, and the 

positive direction is upward. The dynamic equation of each movement is as follows. 

 Vertical movement of the frame: 

 
( ) ( ) ( ) ( ) ( )

2 2
s f s sl sr s sl sr s sl sr sl sr

sl tl sl tl sr tr sr tr

B B
m m z k k z c c z k k c c
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 Roll movement of the frame: 
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 Vertical movement of wheels: 

 ( )
2 2
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B B
m z k z c z k c k k z c z k q = + − − − + − +   (9) 

 ( )
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B B
m z k z c z k c k k z c z k q = + + + − + − +   (10) 

 Where,   is the roll angle of the sprayer around the x-axis, [o]; sz  is the vertical displacement of the 

frame, [m]; tlz  and trz  are the vertical displacement of the left and right wheel respectively, [m]; iy  is the 

horizontal displacement of motion mass im , [m]; 
sm  is the mass of the frame (including the tank), [kg]; tlm  

and trm  are the mass of the left and right wheel respectively, [kg]; xxI  is the moment of inertia of the sprung 

mass around the x axis, [kgm2]; fI  is the moment of inertia of the liquid in the tank around the x axis, [kgm2]; 

slk  and 
srk  are the stiffness of the left and right suspension respectively, [N/m]; slc  and 

src  are the damping 

coefficients of the left and right suspension respectively, [Ns/m]; tlk  and trk  are the stiffness of the left and 

right tire respectively, [N/m]; Th  is the distance from the bottom of the tank to the roll center, [m]; B is the 

wheelbase, [m]; lq  and rq  are the input of the left and right wheel respectively, [m]. 

 It can be seen that a roll motion around the x-axis will occur for the frame under the unevenness 

excitation of the ground, which will cause the liquid in the tank to slosh. The liquid sloshing force acts on the 

frame via the container wall, which will in turn affect the vehicle's roll movement. So, the motions of frame and 

liquid are coupled with each other. 

 It can be calculated from formula (2) that the first-order mass is much larger than the higher-order 

mass. In other words, the first mode dominates the dynamic response of the system. Therefore, only the first-

order mode is taken in the following modeling in order to simplify the calculation. That is, only 
1m , 1h , 1y  and 

1k  are used.  

 The state space model of the system can be established by taking 1y , sz ,  , tlz , trz  and their first-

order derivatives as state variables and taking 1y , sz ,  , tlz , trz and their second-order derivatives as 

outputs.  
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That is, the state vector  
T

1 1 s s tl tl tr trx y y z z z z z z = , and the output vector  

 
T

1 1 s s tl tl tr try y y z z z z z z = . Where, the superscript T means the transpose of a 

vector or matrix. The state space model can be written as 

x Ax Bu
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= +

= +
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 Where, A is the system matrix, B is the input matrix, C is the output matrix, and D is the transfer matrix. 
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 The coupling between the liquid sloshing in the tank and the roll motion of the sprayer chassis under 

the excitation of ground roughness is the research objective of this paper. In other words, the steady-state 

response or forced vibration of the coupling system is the focus of our attention. Therefore, the effect of initial 

conditions is not considered.  
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The specific values of the elements in each matrix can be obtained from the simulation parameters 

given in the next section. The uneven ground excitation under the left and right wheels is used as the input, 

and the response of the system can be obtained by solving the equation (11). 

 

SIMULATION PARAMETERS 
 Many parameters of the sprayer chassis are predetermined, such as suspension stiffness, damping 

coefficient, tire type, etc. It is difficult to change them during pesticide application operation, so their effects on 

roll stability are not considered here. Extracted from a certain type of self-propelled boom sprayer, the 

parameters used in simulations are listed in Tab.1. It is assumed that the car body is symmetrical about the x-

axis to simplify the analysis. 

Table 1  
Parameters of the sprayer chassis and the tank 

Parameters/Units Value 

sm / kg 620 

tlm , trm / kg 70 

xxI / kgm2 600 

slk ,
srk / N/m 27350 

slc ,
src / Ns/m 985 

tlk , trk / N/m 309500 

Th / m 0.3 

B / m 1.6 

fl / m 1.3 

fw / m 1.1 

Note: hf depends on the liquid filling ratio, given in the following paragraph 

 

 Apart from these parameters mentioned above, there are some parameters that are constantly 

changing during pesticide application. The liquid in the tank is continuously consumed during the application 

process, so its mass and moment of inertia change continuously. In addition, the driving speed of the sprayer 

will also change constantly in order to adapt to different working conditions. Obviously, the vertical acceleration 

acting on the tire is different when the sprayer passes over the same ground at different speeds. Undoubtedly, 

these factors will affect the roll stability of the sprayer. Therefore, the liquid filling ratio and the driving speed 

of the sprayer are used as the variable parameters in the simulations. 

 When there is little liquid in the tank, the sloshing force will not be large even if all the liquid is involved 

in the shaking. On the other hand, if the tank is filled with the liquid, the sloshing force is also reduced to some 

extent because the movement of the liquid is restricted by the top cover of the tank. Therefore, the maximum 

sloshing force generally occurs at medium liquid depths (Zheng et al., 2020). The amount of liquid can be 

defined by the filling ratio, that is, the ratio of the liquid volume to the tank capacity. Therefore, the filling ratio 

is chosen to be 0.3, 0.6 and 0.9. The case of no liquid is also included in order to analyze the influence of 

liquid, that is, the filling ratio is 0. The capacity of the tank is 1000 L. The liquid is tap water. 

 To improve efficiency, sprayers need to travel at higher speeds when applying pesticides. However, 

the sprayer often needs to be operated at relatively low speeds when turning around at the end of the field or 

shifting the operation workplace. Taking all situations into account, four driving speeds are selected in the 

simulations, that is, 0.5 m/s, 1.0 m/s, 1.5 m/s and 2.0 m/s. 

 

UNEVEN GROUND EXCITATION 

 There are inevitably some bumps or pits and other obstacles on the farmland and field road. Compared 

with hardened pavement in the urban, the ground of farmland is relatively rough, which is equivalent to E-level 

or F-level road. Even on relatively soft paddy fields, the roughness of the hard bottom is between D-level and 
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E-level (Zhu et al., 2016). When the wheels pass these obstacles during the pesticide application process of 

the sprayer, the liquid in the tank is prone to sloshing greatly.  

 The distribution of obstacles is unpredictable and the bumps and dips also appear randomly. 

Therefore, the spatial distribution of road surface roughness is random. In other words, the roughness of the 

road surface is different for different plots.  

Therefore, the description of road surface roughness is based on statistical theory. Pavement roughness can 

be simulated using filtered white noise or sinusoid superposition method (Xu, 2007).  

Here, the sinusoid superposition method is adopted to get the excitation of uneven ground. 

 The stochastic road spectrum can be written as: 

 ( ) ( ) ( ), ,

1

2 sin 2
m

q mid i i mid i i

i

q x G n n n x 
=

=  +   (12) 
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q q
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is the fitting expression of the power spectrum density, [m3]; n  is the spatial 

frequency, [m-1]; 0n  is the spatial frequency reference value, generally 1

0 0.1mn −= ;
in  is the increment of the 

spatial frequency, [m-1]; ,mid in  is the central frequency of the i-th spatial frequency, [m-1]; x  is the longitudinal 

position along the road, [m]; i  is the random numbers in range of  0,2 ; w  is the frequency index, generally 

2w = .  The typical stochastic spectrum of E-level road is shown in Fig.4.  

 
Fig. 4 - Typical E-level 3D pavement 

 

 As mentioned earlier, the roll stability of the sprayer under the liquid sloshing force is the main objective 

in this article. Therefore, the two-dimensional distribution of the uneven pavement is enough to describe the 

excitations generated from the ground. That is, the sprayer drives in the longitudinal direction and the 

unevenness along the vertical direction acts on the left and right wheel.  Taking the driving speed into account, 

the spatial distribution of the uneven ground can be converted into the excitation that changes with the time. 

Obviously, the excitations acting on the wheels are also random, as shown in Fig. 5.  
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Fig. 5 - Typical excitation on left and right wheel 

RESULTS  

EFFECT ON ROLL ANGLE   

 The roll angle of the frame can distinctly reflect the roll of the sprayer. The change of the roll angle 

with time at different filling ratio and speeds is shown in Fig. 6, where, 𝑣 is the driving velocity and the numbers 

in the legend are filling ratio. 

   
 

  
 

Fig. 6 - Roll angle of the sprayer at different filling ratios and driving speeds 

 

 It can be seen that the influence of filling ratio on the roll angle is different for a different driving speed. 

When the speed is low (v=0.5 m/s), the roll angle in the presence of liquid is smaller than that in the absence 

of liquid, and the roll angle decreases as the filling ratio increases; with the increase of velocity (v=1.0 m/s and 

v=1.5 m/s), the roll angle in the presence of liquid is larger than that in the absence of liquid, and the larger 

the liquid filling ratio, the larger the roll angle. When the speed increases to v=2 m/s, the shape of the roll angle 
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curves corresponding to different filling ratios is a little different. However, in general, the roll angle of the 

vehicle body with the liquid is greater than that without liquid. 

 The reasons are interpreted as follows. The tire displacement is basically consistent with the terrain 

change when sprayers drive at low speed. In this case, the vehicle body faces rolls, but the angular velocity is 

small. Therefore, the movement of the liquid in the horizontal direction is not violent. The impact effect of the 

liquid on the tank wall is not significant, and it is mainly manifested as a change in the position of the centroid 

of the liquid. Considering that the liquid sloshing has a certain degree of lag relative to the displacement of the 

vehicle body, the change of the position of the liquid centroid reduces the inclination of the body instead. The 

larger the liquid filling ratio, the larger the change in the position of the centroid of the liquid. So, the offset 

effect of the liquid on the roll angle is more obvious. However, when the sprayer passes over ground at a 

higher speed, the roll angular velocity of the vehicle body becomes larger, and the excitation on the liquid also 

increases. The liquid is prone to sloshing greatly under large amplitude and high frequency excitations and 

produces a significantly increased sloshing force on the tank wall. In addition, the larger the liquid filling ratio, 

the larger the liquid sloshing force. So, the roll angle increases with the increase of the filling ratio. 

 It can also be seen that the roll angle generally increases as the speed increases. However, the 

maximum roll angle does not change much under the case of absence of liquid. In other words, the increase 

of the roll angle is mainly due to the contribution of the liquid. The reason may be the sloshing force formed by 

the reciprocating oscillation of the liquid under the excitation of uneven ground. Higher velocities mean more 

violent oscillations and thus greater horizontal sloshing forces act on the vehicle frame. Therefore, the vehicle 

body is more likely to roll when the sprayer passes over the uneven ground at higher speeds. 

 

EFFECT ON FRAME ACCELARATION 

 The motion of the vehicle frame also includes vertical vibrations in addition to roll. The frame vibration 

also affects the pressure of the tires on the ground through the transmission of the suspension. This pressure 

is also an important indicator of roll stability. The vertical acceleration of the sprayer frame at different filling 

ratio and speeds is shown in Fig. 7.  

   
 

  



Vol. 67, No. 2 / 2022  INMATEH - Agricultural Engineering 

 

115 

Fig. 7 - Frame acceleration of the sprayer at different filling ratio and driving speed 

 

 When the speed is low or high ( 0.5m/sv = , 2.0m/sv = ), the vertical acceleration of the vehicle body 

in the presence of liquid is greater than that in the absence of liquid, and the acceleration increases with the 

increase of the filling ratio. However, when the speed is medium, the acceleration of the vehicle frame in the 

presence of liquid is less than that in the absence of liquid. The acceleration is the smallest when the filling 

ratio is 0.3 for 1.0m/sv = , while in the case of 1.5m/sv = , the larger the filling ratio the smaller the 

acceleration.  

 The reason may lie in the combined action of the liquid sloshing force and gravity. When the speed is 

low, the liquid sloshing force is small and the effect of the mass of the liquid on the vertical acceleration is more 

significant. The increase of the acceleration is mainly due to the presence of the liquid gravity. On the other 

hand, a larger liquid mass corresponds to a larger inertial force. Therefore, the vertical acceleration of the 

frame is attenuated by this force when the sprayer drives at medium speed because the effect of the horizontal 

sloshing force is relatively weak.   

However, the sloshing force will increase significantly if the sprayer passes over uneven ground at 

high speed. The influence of sloshing force is more important under this situation. So, the acceleration 

increases with the increase of filling ratio again.  

 In addition, it can be seen that the vertical acceleration increases generally as the speed increases. 

Similarly, the presence of liquid plays an important role in the increase of the acceleration. Therefore, the 

presence or absence of the liquid has significant effect on the roll stability of the sprayer that is subjected to 

the excitation from the uneven ground.  

 

CONCLUSIONS 

 Based on the equivalent mechanical model of liquid sloshing and related experimental results, 

considering the vertical and roll motion of the vehicle body and the sloshing of the liquid in the tank, a coupling 

dynamic model of the sprayer was established. The roll stability of the sprayer under the excitation of uneven 

ground was studied, and the effects of the liquid filling ratio and driving speed on the roll angle and the vertical 

acceleration of the vehicle frame were analyzed. The results show that: 

 (1) The effect of the liquid filling ratio is related to the driving speed. The roll angle decreases with the 

increase of filling ratio at low speed, but it increases with the increase of the filling ratio at high speed. However, 

the changes of the vehicle frame acceleration with the liquid filling ratio are almost opposite. 

 (2) In general, both the roll angle and the vertical acceleration of the sprayer frame increase with the 

increase of the driving speed, especially with the presence of liquid. Therefore, the influence of liquid sloshing 

on roll stability cannot be ignored for sprayers that often travel on uneven ground. 
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